Float Compression 8: Blosc

Introduction and index of this series is here.

Several people have asked whether I have tried Blosc library for compressing my test data set. I was aware of it, but have not tried it! So this post is fixing that.

In the graphics/vfx world, OpenVDB uses Blosc as one option for volumetric data compression. I had no idea until about two weeks ago!

What is Blosc?

Blosc is many things, but if we ignore all the parts that are not relevant for us (Python APIs etc.), the summary is fairly simple:

  • It is a data compression library geared towards structured (i.e. arrays of same-sized items) binary data. There’s a fairly simple C API to access it.
  • It splits the data into separate chunks, and compresses/decompresses them separately. This optionally allows multi-threading by putting each chunk onto a separate job/thread.
  • It has a built-in compression codec BloscLZ, based on FastLZ. Out of the box it also builds with support for Zlib, LZ4, and Zstd.
  • It has several built-in lossless data filtering options: “shuffle” (exactly the same as “reorder bytes” from part 3), “bitshuffle” and “delta”.

All this sounds pretty much exactly like what I’ve been playing with in this series! So, how does Blosc with all default settings (their own BloscLZ compression, shuffle filter) compare? The below is on Windows, VS2022 (thin solid lines are zstd and lz4 with byte reorder + delta filter optimizations from previous post; dashed lines are zstd and lz4 without any filtering; thick line is blosc defaults):

So, Blosc defaults are:

  • Better than just throwing zstd at the data set: slightly higher compression ratio, faster compression, way faster decompression.
  • Mostly better than just using lz4: much better compression ratio, faster compression, decompression slightly slower but still fast.
  • However, when compared to my filters from previous post, Blosc default settings do not really “win” – compression ratio is quite a bit lower (but, compression and decompression speed is very good).

Note that here I’m testing Blosc without using multi-threading, i.e. nthreads is set to 1 which is the default.

I’m not quite sure how they arrive at the “Blosc is faster than a memcpy()” claim on their website though. Maybe if all the data is literally zeroes, you could get there? Otherwise I don’t quite see how any LZ-like codec could be faster than just a memory copy, on any realistic data.

Blosc but without the Shuffle filter

Ok, how about Blosc but using LZ4 or Zstd compression, instead of the default BloscLZ? And for now, let’s also turn off the default “shuffle” (“reorder bytes”) filter:

  • Without “shuffle” filter, Blosc-Zstd basically is just Zstd, with a very small overhead and a tiny loss in compression ratio. Same for Blosc-LZ4; it is “just” LZ4, so to speak.
  • BloscLZ compressor without the shuffle filter is behind vanilla LZ4 both in terms of ratio and performance.

Blosc with Shuffle, and Zstd/LZ4

What if we turn the Shuffle filter back on, but also try LZ4 and Zstd?

For both zstd and lz4 cases, the compression ratio is below what “my” filter achieves. But the decompression performance is interesting: Blosc-Zstd is slightly ahead of “zstd + my filter”, and Blosc-LZ4 is quite a bit ahead of “lz4 + my filter”. So that’s interesting! So far, Blosc-LZ4 with Shuffle is on the Pareto frontier if you need that particular balance between ratio and decompression performance.

Blosc with Shuffle and Delta filters

Looks like Blosc default Shuffle filter is exactly the same as my “reorder bytes” filter. But in terms of best compression ratio, “reorder bytes + delta” was the best option so far. Oh hey, Blosc (since version 2.0) also has a filter named “Delta”! Let’s try that one out:

Huh. The Shuffle + Delta combination is, like, not great at all? The compression ratio is below 2.0 everywhere; i.e. worse than just zstd or lz4 without any data filtering? šŸ¤”

Oh wait, looks like Blosc' “Delta” filter is not a “delta” at all. Sometime in 2017 they changed it to be a XOR filter instead (commit). The commit message says “for better numerical stability”, no idea what that means since this is operating all on integers.

Ah well, looks like at least on this data set, the Delta filter does not do anything good, so we’ll forget about it.

Input data chunking

The question remains, why and how is Blosc-LZ4 with Shuffle faster at decompression than “my” filter with LZ4? One reason could be that my filter is not entirely optimized (very possible). Another might be that Blosc is doing something differently…

And that difference is: by default, Blosc splits input data into separate chunks. The chunk sizes seem to be 256 kilobytes by default. Then each chunk is filtered and compressed completely independently from the other chunks. Of course, the smaller the chunk size, the lower is the compression ratio that you get, since the LZ compression codec can’t “see” data repetitions outside the chunk boundaries.

What if I added very similar “data chunking” to “my” tests, i.e. just zstd/lz4, my filters, and all that split into independent chunks? Here’s without chunks, plus graphs for 64KB, 256KB, 1MB, 4MB chunk sizes:

It is a bit crowded, but you can see how splitting data into 4MB chunks practically does not lose any compression ratio, yet manages to make LZ4 decoding quite a bit faster. With much smaller chunk sizes of 64KB, the compression ratio loss seems to be “maybe too large” (still way better than without any data filtering though). It feels like chunk size of 1MB is quite good: very small compression ratio loss, good decompression speedup:

So this is another trick that is not directly related to Blosc: splitting up your data into separate 256KB-1MB chunks might be worth doing. Not only this would enable operating on chunks in parallel (if you wish to do that), but also it speeds things up, especially decompression. The reason being that the working set memory needed to do decompression now neatly fits into CPU caches.


Blosc is pretty good!

I do wonder why they only have a “shuffle” filter built-in though (there’s also “delta” but it’s really some sort of “xor”). At least on my data, “shuffle + actual delta” would result in much better compression ratio. Without having that filter, blosc loses to the filter I have at the end of previous post in terms of compression ratio, while being roughly the same in performance (after I apply 1MB data chunking in my code).