
A
D

A
M

 –
 M

ad
e 

w
ith

 U
ni

ty

Entity Component Systems & 
Data Oriented Design

�1

Unity Training Academy 2018-2019, #3 
Aras Pranckevičius



●All this will not be Unity specific! 

●A rant on Object Oriented Design 
●Data Oriented Design 
● Entity Component Systems 
●Practical Example

Outline

�2



Problem

Object Oriented Design/
Programming

�3



●Class hierarchies 
●Virtual functions 
● Encapsulation often violated since stuff Needs To Know 
● “One Thing At A Time” approach 
● Late decisions

Typical Implementation of OO

�4



�5

This is going to be… 
OOP party like it’s 1999



//	Component	base	class.	Knows	about	the	parent	game	object,	and	has	some	virtual	methods.	
class	Component	
{	
public:	
				Component()	:	m_GameObject(nullptr)	{}	
				virtual	~Component()	{}	
					
				virtual	void	Start()	{}	
				virtual	void	Update(double	time,	float	deltaTime)	{}	

				const	GameObject&	GetGameObject()	const	{	return	*m_GameObject;	}	
				GameObject&	GetGameObject()	{	return	*m_GameObject;	}	
				void	SetGameObject(GameObject&	go)	{	m_GameObject	=	&go;	}	

private:	
				GameObject*	m_GameObject;	
};

Simple OO component system: Component

�6



//	Game	object	class.	Has	an	array	of	components.	
class	GameObject	
{	
public:	
				GameObject(const	std::string&&	name)	:	m_Name(name)	{	}	
				~GameObject()	{	for	(auto	c	:	m_Components)	delete	c;	}		

				//	get	a	component	of	type	T,	or	null	if	it	does	not	exist	on	this	game	object	
				template<typename	T>	
				T*	GetComponent()	
				{	
								for	(auto	i	:	m_Components)	{	T*	c	=	dynamic_cast<T*>(i);	if	(c	!=	nullptr)	return	c;	}	
								return	nullptr;	
				}	

				//	add	a	new	component	to	this	game	object	
				void	AddComponent(Component*	c)	
				{	
								c->SetGameObject(*this);	m_Components.emplace_back(c);	
				}	
					
				void	Start()	{	for	(auto	c	:	m_Components)	c->Start();	}	
				void	Update(double	time,	float	deltaTime)	{	for	(auto	c	:	m_Components)	c->Update(time,	deltaTime);	}	
					
private:	
				std::string	m_Name;	
				ComponentVector	m_Components;	
};

Simple OO component system: GameObject

�7



//	Finds	all	components	of	given	type	in	the	whole	scene	
template<typename	T>	
static	ComponentVector	FindAllComponentsOfType()	
{	
				ComponentVector	res;	
				for	(auto	go	:	s_Objects)	
				{	
								T*	c	=	go->GetComponent<T>();	
								if	(c	!=	nullptr)	res.emplace_back(c);	
				}	
				return	res;	
}	

//	Find	one	component	of	given	type	in	the	scene	(returns	first	found	one)	
template<typename	T>	
static	T*	FindOfType()	
{	
				for	(auto	go	:	s_Objects)	
				{	
								T*	c	=	go->GetComponent<T>();	
								if	(c	!=	nullptr)	return	c;	
				}	
				return	nullptr;	
}

Simple OO component system: Utilities

�8



//	2D	position:	just	x,y	coordinates	
struct	PositionComponent	:	public	Component	
{	
				float	x,	y;	
};	

//	Sprite:	color,	sprite	index	(in	the	sprite	atlas),	and	scale	for	rendering	it	
struct	SpriteComponent	:	public	Component	
{	
				float	colorR,	colorG,	colorB;	
				int	spriteIndex;	
				float	scale;	
};	

Simple OO component system: various components

�9



//	Move	around	with	constant	velocity.	When	reached	world	bounds,	reflect	back	from	them.	
struct	MoveComponent	:	public	Component	
{	
				float	velx,	vely;	
				WorldBoundsComponent*	bounds;	
					
				MoveComponent(float	minSpeed,	float	maxSpeed)		
				{	
								/*	…	*/	
				}	

				virtual	void	Start()	override	
				{	
								bounds	=	FindOfType<WorldBoundsComponent>();	
				}	
					
				virtual	void	Update(double	time,	float	deltaTime)	override	
				{	
								/*	…	*/	
				}	
};

Simple OO component system: various components

�10



virtual	void	Update(double	time,	float	deltaTime)	override	
{	
				//	get	Position	component	on	our	game	object	
				PositionComponent*	pos	=	GetGameObject().GetComponent<PositionComponent>();	
					
				//	update	position	based	on	movement	velocity	&	delta	time	
				pos->x	+=	velx	*	deltaTime;	
				pos->y	+=	vely	*	deltaTime;	
					
				//	check	against	world	bounds;	put	back	onto	bounds	and	mirror	
				//	the	velocity	component	to	"bounce"	back	
				if	(pos->x	<	bounds->xMin)	{	velx	=	-velx;	pos->x	=	bounds->xMin;	}	
				if	(pos->x	>	bounds->xMax)	{	velx	=	-velx;	pos->x	=	bounds->xMax;	}	
				if	(pos->y	<	bounds->yMin)	{	vely	=	-vely;	pos->y	=	bounds->yMin;	}	
				if	(pos->y	>	bounds->yMax)	{	vely	=	-vely;	pos->y	=	bounds->yMax;	}	
}

Simple OO component system: components logic

�11



void	GameUpdate(sprite_data_t*	data,	double	time,	float	deltaTime)	
{	
				//	go	through	all	objects	
				for	(auto	go	:	s_Objects)	
				{	
								//	Update	all	their	components	
								go->Update(time,	deltaTime);	

								//	For	objects	that	have	a	Position	&	Sprite	on	them:	write	out	
								//	their	data	into	destination	buffer	that	will	be	rendered	later	on.	
								PositionComponent*	pos	=	go->GetComponent<PositionComponent>();	
								SpriteComponent*	sprite	=	go->GetComponent<SpriteComponent>();	
								if	(pos	!=	nullptr	&&	sprite	!=	nullptr)	
								{	
												/*	…	emit	data	for	sprite	rendering	…	*/	
							}	
				}	
}

Simple OO component system: game update loop

�12



●Sprites that move around & bounce from world edges 
●Bubbles, move around slowly 
●Sprites bounce from bubbles, and get their color

Let’s make a simple “game” with this!

�13



�14

Let’s make a simple “game” with this!



●Many systems in games do not belong to “one object” 
● e.g. Collision, Damage, AI: work on 2+ objects 

● “Sprites avoid Bubbles” in our game: 
● put avoidance logic onto thing that avoids something? 
● put avoidance logic onto thing that should be avoided? 
● somewhere else?

Issues with OO design: where to put code?

�15



●Many languages are “single dispatch” 
● there are Objects, and Methods that work with them 

●But what we need is “multiple dispatch” 
● Avoidance system works on two sets of objects

Issues with OO design: where to put code?

�16



● Ever opened a Unity project and tried to figure out how it works? 
● …yeah, that :) 
● “game logic” scattered around in million components, with no overview

Issues with OO design: hard to know what does what

�17



Issues with OO design: “messy base class” problem

�18

EntityType	entityType()	const	override;	

void	init(World*	world,	EntityId	entityId,	EntityMode	mode)	override;	
void	uninit()	override;	

Vec2F	position()	const	override;	
Vec2F	velocity()	const	override;	

Vec2F	mouthPosition()	const	override;	
Vec2F	mouthOffset()	const;	
Vec2F	feetOffset()	const;	
Vec2F	headArmorOffset()	const;	
Vec2F	chestArmorOffset()	const;	
Vec2F	legsArmorOffset()	const;	
Vec2F	backArmorOffset()	const;	

//	relative	to	current	position	
RectF	metaBoundBox()	const	override;	

//	relative	to	current	position	
RectF	collisionArea()	const	override;	
//	…	continued	…

Pasted from “How many accessors could you possibly need?”, Catherine West 
https://kyren.github.io/rustconf_2018_slides/index.html

https://kyren.github.io/rustconf_2018_slides/index.html


Issues with OO design: “messy base class” problem

�19

//	…	continued	…	
void	hitOther(EntityId	targetEntityId,	DamageRequest	const&	damageRequest)	override;	
void	damagedOther(DamageNotification	const&	damage)	override;	

List<DamageSource>	damageSources()	const	override;	

bool	shouldDestroy()	const	override;	
void	destroy(RenderCallback*	renderCallback)	override;	

Maybe<EntityAnchorState>	loungingIn()	const	override;	
bool	lounge(EntityId	loungeableEntityId,	size_t	anchorIndex);	
void	stopLounging();	
//	…	continued	…



Issues with OO design: “messy base class” problem

�20

//	…	continued	…	
float	health()	const	override;	
float	maxHealth()	const	override;	
DamageBarType	damageBar()	const	override;	
float	healthPercentage()	const;	

float	energy()	const	override;	
float	maxEnergy()	const;	
float	energyPercentage()	const;	
float	energyRegenBlockPercent()	const;	

bool	energyLocked()	const	override;	
bool	fullEnergy()	const	override;	
bool	consumeEnergy(float	energy)	override;	

float	foodPercentage()	const;	

float	breath()	const;	
float	maxBreath()	const;	
//	…	continued	…



Issues with OO design: “messy base class” problem

�21

//	…	continued	…	
void	playEmote(HumanoidEmote	emote)	override;	

bool	canUseTool()	const;	

void	beginPrimaryFire();	
void	beginAltFire();	

void	endPrimaryFire();	
void	endAltFire();	

void	beginTrigger();	
void	endTrigger();	

ItemPtr	primaryHandItem()	const;	
ItemPtr	altHandItem()	const;	
//	…	etc.

This is not the best OO design, and it certainly is possible to make a better one. 
But also, often code ends up being like this, even if no one wanted it that way.



● 1 million sprites, 20 bubbles: 
●330ms game update 
●470ms startup time 
● Low-hanging fruit stupidities 
●Data scattered around in memory 
●Virtual function calls

Issues with OO design: performance

�22

Timings on 2018 MacBookPro (2.9GHz Core i9), Xcode, Release build. 
Code: https://github.com/aras-p/dod-playground/tree/3529f232 

https://github.com/aras-p/dod-playground/tree/3529f232


● 1 million sprites, 20 bubbles: 
●310MB RAM usage 
● Every Component has pointer to GameObject, but very few need it 
● Every Component has a pointer to virtual function table 
● Each GameObject/Component allocated individually

Issues with OO design: memory usage

�23



Issues with OO design: typical memory view

�24

https://software.intel.com/en-us/articles/get-started-with-the-unity-entity-component-system-ecs-c-sharp-job-system-and-burst-compiler 

https://software.intel.com/en-us/articles/get-started-with-the-unity-entity-component-system-ecs-c-sharp-job-system-and-burst-compiler


●How would you multi-thread it? 
●Or make it run on a GPU? 

● In many OO designs doing that is very hard 
● Not clear who reads which data, and who writes which data

Issues with OO design: optimizability

�25



●How would you write tests for this? 
●OO designs often need a lot of setup/mocking/faking to test. 
● Create object hierarchies, managers, adapters, singletons, …

Issues with OO design: testability

�26



�27

Intermission

A Bit About Computer Hardware…



CPU performance trends*

�28

* from https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


CPU-RAM performance gap*

�29

* from Computer Architecture: A Quantitative Approach



● Read from CPU L1 cache: 0.5ns 
● Branch mispredict: 5ns 
● Read from CPU L2 cache: 7ns 
● Read from RAM: 100ns 
● Read from SSD: 150’000ns 
● Read 1MB from RAM: 250’000ns 
● Send network packet CA->NL->CA: 150’000’000ns

Latency Numbers in Computers*

�30

* from https://gist.github.com/hellerbarde/2843375 as of 2012  
today some numbers slightly different, but rough ballpark similar

https://gist.github.com/hellerbarde/2843375


● Read from CPU L1 cache: 0.5s - one heart beat 
● Branch mispredict: 5s - yawn 
● Read from CPU L2 cache: 7s - long yawn 
● Read from RAM: 100s - brushing teeth 
● Read from SSD: 1.7 days - a weekend 
● Read 1MB from RAM: 2.9 days - a long weekend 
● Send network packet CA->NL->CA: 4.9 years - University with some slack

Latency Numbers in Computers, humanized*

�31

* multiply by a billion!



�32

The Suspense

Alternatives to Traditional OO



● Typical OO puts both Code and Data together in one class 
● Why, though? 
● Recall problem of “where to put code”:

Does Code and Data need to go together?

�33

//	this?	
class	ThingThatAvoids	
{	
				void	AvoidOtherThing(ThingToAvoid*	thing);	
};	

//	or	this?	
class	ThingToAvoid	
{	
				void	MakeAvoidMe(ThingThatAvoids*	who);	
};	

//	why	not	this	instead?	does	not	even	need	to	be	in	a	class	
void	DoAvoidStuff(ThingThatAvoids*	who,	ThingToAvoid*	whom);	



“The purpose of all programs, and all parts of those programs, is to transform 
data from one form to another.” 

“If you don’t understand the data, you don’t understand the problem.” 

— Mike Acton

Data First

�34

"Data-Oriented Design and C++”, CppCon 2014 https://www.youtube.com/watch?v=rX0ItVEVjHc

https://www.youtube.com/watch?v=rX0ItVEVjHc


Here’s a 1976 classic book by Niklaus Wirth. 

One could argue that “data structures” maybe 
should be first. 

Notice how it does not talk about “objects” at all!

Data First

�35



When there is One, there is Many

�36

● How often do you have one of a particular thing? 
● In games, most common cases are: 
● There’s a handful of things. Any code will work here. 
● There’s way too many things. Have to be careful with performance.



When there is One, there is Many

�37

https://twitter.com/bmcnett/status/1043285997998432256 

https://twitter.com/bmcnett/status/1043285997998432256


When there is One, there is Many

�38

https://twitter.com/bmcnett/status/1043332565308923904  

https://twitter.com/bmcnett/status/1043332565308923904


When there is One, there is Many

�39

virtual	void	Update(double	time,	float	deltaTime)	override	
{	
				/*	move	one	thing	*/	
}	

void	UpdateAllMoves(size_t	n,	GameObject*	objects,	double	time,	float	deltaTime)	
{	
				/*	move	all	of	them	*/	
}	



�40

The Grand Unveil

Data Oriented Design



Data Oriented Design (DOD)

�41

● … the previous ideas basically already are DOD: 
● Understand The Data 
● What is the ideal data needed to solve the problem? 
● How is it laid out? 
● Who reads what and who writes what? 
● What are the patterns in the data? 

● Design For Common Case 
● Very rarely there is “one” of something 
● Why is your code working on “one” thing at a time?



DOD Resources

�42

● Data-Oriented Design (Or Why You Might Be Shooting Yourself in The Foot 
With OOP) blog post, Noel Llopis 

● Practical Examples in Data Oriented Design slides, Niklas Gray 
● Data-Oriented Design and C++ video, Mike Acton 
● Typical C++ Bullshit slide gallery, Mike Acton 
● Data-Oriented Design blog post & links, Adam Sawicki

http://gamesfromwithin.com/data-oriented-design
http://gamesfromwithin.com/data-oriented-design
https://docs.google.com/presentation/d/17Bzle0w6jz-1ndabrvC5MXUIQ5jme0M8xBF71oz-0Js/present?slide=id.i0
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://macton.smugmug.com/Other/2008-07-15-by-Eye-Fi/n-xmKDH/i-BrHWXdJ
http://www.asawicki.info/news_1422_data-oriented_design_-_links_and_thoughts.html


�43

The Grand Unveil, Act II

Entity Component Systems



Is traditional Unity GO/Component setup ECS?

�44

● Tradionaly Unity setup uses Components, but not ECS. 
● Components solve part of “Base Class From Hell” problem, but not others: 
● Hard to reason about logic, data & code flow, 
● Logic (Update etc.) performed on one thing at a time, 
● Inside one type/class (“where to put code” problem), 
● Memory/data locality is not great, 
● A bunch of virtual calls & pointers



Entity-Component-System (ECS)

�45

● Entity: just an identifier. 
● Kinda like “primary key” from database? Yes! 

● Component: data. 
● System: code that works on entities having certain set(s) of Components. 

https://en.wikipedia.org/wiki/Entity-component-system 

https://en.wikipedia.org/wiki/Entity-component-system


ECS Resources

�46

● “Using Rust For Game Development”, Catherine West 
● You can just ignore Rust parts, the ECS part is great! 
● Blog, Slides, Video. 

● Unity ECS specific: 
● https://unity3d.com/unity/features/job-system-ECS: ECS/JobSystem/Burst 
● ECS in Unity Tutorial, Sondre Agledahl 
● Get Started with the Unity ECS, Job System, and Burst, Cristiano Ferreira & Mike Geig

https://kyren.github.io/2018/09/14/rustconf-talk.html
https://kyren.github.io/rustconf_2018_slides/index.html
https://www.youtube.com/watch?v=aKLntZcp27M
https://unity3d.com/unity/features/job-system-ECS
https://blogs.msdn.microsoft.com/uk_faculty_connection/2018/05/08/entity-component-system-in-unity-a-tutorial/
https://software.intel.com/en-us/articles/get-started-with-the-unity-entity-component-system-ecs-c-sharp-job-system-and-burst-compiler


�47

Yeah I’ve no idea what to write here by now

ECS/DOD Example



Recall our simple “game”

�48

Sprites from Dan Cook’s SpaceCute prototyping challenge, 
http://www.lostgarden.com/2007/03/spacecute-prototyping-challenge.html 

●400 lines of code 
● 1 million sprites, 20 bubbles: 
●330ms update time 
●470ms startup time 
●310MB memory usage

http://www.lostgarden.com/2007/03/spacecute-prototyping-challenge.html


Recall our simple “game”

�49

●400 lines of code 
● 1 million sprites, 20 bubbles: 
●330ms update time 
●470ms startup time 
●310MB memory usage

Sprites from Dan Cook’s SpaceCute prototyping challenge, 
http://www.lostgarden.com/2007/03/spacecute-prototyping-challenge.html 

http://www.lostgarden.com/2007/03/spacecute-prototyping-challenge.html


Recall our simple “game”

�50

●400 lines of code 
● 1 million sprites, 20 bubbles: 
●330ms update time 
●470ms startup time 
●310MB memory usage

Sprites from Dan Cook’s SpaceCute prototyping challenge, 
http://www.lostgarden.com/2007/03/spacecute-prototyping-challenge.html 

http://www.lostgarden.com/2007/03/spacecute-prototyping-challenge.html


First: Fix Stupidities

�51

● GetComponent searches for component in GO each. and. every. time. 
● We could find them once and store it! (common opt. in Unity too) 
● 330ms → 309ms (commit)

https://github.com/aras-p/dod-playground/commit/dc259b940


First: Fix Stupidities, take 2

�52

● GetComponent inside inner loop of Avoid component, cache that too. 
● 309ms → 78ms! (commit)

https://github.com/aras-p/dod-playground/commit/3856b0af7


Where time is spent now?

�53

● Let’s use a Profiler. 
● I’m on Mac, so Xcode Instruments.



Let’s make some Systems: AvoidanceSystem

�54

● Avoid & AvoidThis components are almost only data now, 
● System knows all things it will operate on

//	When	present,	tells	things	that	have	Avoid	component	to	avoid	this	object	
struct	AvoidThisComponent	:	public	Component	
{	
				float	distance;	
};	

//	Objects	with	this	component	"avoid"	objects	with	AvoidThis	component.	
struct	AvoidComponent	:	public	Component	
{	
				virtual	void	Start()	override;	
};	

//	"Avoidance	system"	works	out	interactions	between	objects	that	have	AvoidThis	and	Avoid	
//	components.	Objects	with	Avoid	component:	
//	-	when	they	get	closer	to	AvoidThis	than	AvoidThis::distance,	they	bounce	back,	
//	-	also	they	take	sprite	color	from	the	object	they	just	bumped	into	
struct	AvoidanceSystem	
{	
				//	things	to	be	avoided:	distances	to	them,	and	their	position	components	
				std::vector<float>	avoidDistanceList;	
				std::vector<PositionComponent*>	avoidPositionList;	
					
				//	objects	that	avoid:	their	position	components	
				std::vector<PositionComponent*>	objectList;	
				//	…



Let’s make some Systems: AvoidanceSystem

�55

● Here’s the logic code of the system 
● 78ms → 69ms (commit)

void	UpdateSystem(double	time,	float	deltaTime)	
{	
				//	go	through	all	the	objects	
				for	(size_t	io	=	0,	no	=	objectList.size();	io	!=	no;	++io)	
				{	
								PositionComponent*	myposition	=	objectList[io];	

								//	check	each	thing	in	avoid	list	
								for	(size_t	ia	=	0,	na	=	avoidPositionList.size();	ia	!=	na;	++ia)	
								{	
												float	avDistance	=	avoidDistanceList[ia];	
												PositionComponent*	avoidposition	=	avoidPositionList[ia];	
													
												//	is	our	position	closer	to	"thing	to	avoid"	position	than	the	avoid	distance?	
												if	(DistanceSq(myposition,	avoidposition)	<	avDistance	*	avDistance)	
												{	
																/*	…	*/	
											}	
								}	
				}	
}	

https://github.com/aras-p/dod-playground/commit/e80febd29f


Let’s make some Systems: MoveSystem

�56

● Similar, let’s make a MoveSystem

//	Move	around	with	constant	velocity.	When	reached	world	bounds,	reflect	back	from	them.	
struct	MoveComponent	:	public	Component	
{	
				float	velx,	vely;	
};	

struct	MoveSystem	
{	
				WorldBoundsComponent*	bounds;	
				std::vector<PositionComponent*>	positionList;	
				std::vector<MoveComponent*>	moveList;	
				/*	…	*/



Let’s make some Systems: MoveSystem

�57

● Here’s the logic of the MoveSystem 
● 69ms → 83ms (commit). 
● What?!

void	UpdateSystem(double	time,	float	deltaTime)	
{	
				//	go	through	all	the	objects	
				for	(size_t	io	=	0,	no	=	positionList.size();	io	!=	no;	++io)	
				{	
								PositionComponent*	pos	=	positionList[io];	
								MoveComponent*	move	=	moveList[io];	
									
								//	update	position	based	on	movement	velocity	&	delta	time	
								pos->x	+=	move->velx	*	deltaTime;	
								pos->y	+=	move->vely	*	deltaTime;	
									
								//	check	against	world	bounds;	put	back	onto	bounds	and	mirror	the	velocity	component	to	"bounce"	back	
								if	(pos->x	<	bounds->xMin)	{	move->velx	=	-move->velx;	pos->x	=	bounds->xMin;	}	
								if	(pos->x	>	bounds->xMax)	{	move->velx	=	-move->velx;	pos->x	=	bounds->xMax;	}	
								if	(pos->y	<	bounds->yMin)	{	move->vely	=	-move->vely;	pos->y	=	bounds->yMin;	}	
								if	(pos->y	>	bounds->yMax)	{	move->vely	=	-move->vely;	pos->y	=	bounds->yMax;	}	
				}	
}

https://github.com/aras-p/dod-playground/commit/32021078111fe


Ok what is going on?

�58

● Profiler again:



Lessons so far

�59

● Optimizing one place can make things slower for unexpected reasons. 
● Out-of-order CPUs, caches, prefetching, … maybe? I did not dig in here :/ 

● C++ RTTI (dynamic_cast) can be really slow. 
● We use it in GameObject::GetComponent.

//	get	a	component	of	type	T,	or	null	if	it	does	not	exist	on	this	game	object	
template<typename	T>	
T*	GetComponent()	
{	
				for	(auto	i	:	m_Components)	{	T*	c	=	dynamic_cast<T*>(i);	if	(c	!=	nullptr)	return	c;	}	
				return	nullptr;	
}	



Let’s stop using C++ RTTI then

�60

● If we had a “Type” enum, and each Component stored the Type… 
● 83ms → 54ms (commit), yay.

enum ComponentType
{
    kCompPosition,
    kCompSprite,
    kCompWorldBounds,
    kCompMove,
    kCompAvoid,
    kCompAvoidThis,
}; 
// ... 
ComponentType m_Type; 

// was: T* c = dynamic_cast<T*>(i); if (c != nullptr) return c;
if (c->GetType() == T::kTypeId) return (T*)c;

https://github.com/aras-p/dod-playground/commit/e20550d


So far:

�61

● Update performance: 6x faster (330ms→54ms), yay! 
● Memory usage: increased 310MB→363MB 
● Component pointer caches, type IDs in each component, … 

● Lines of code: more 400→500 

● Let’s try to remove some things!



Avoid & AvoidThis Components, who needs them?

�62

● That’s right. No one! 
● Just register objects directly with AvoidanceSystem. 
● 54ms → 46ms, 363MB→325MB, 500→455lines (commit)

https://github.com/aras-p/dod-playground/commit/2378c5394a


Actually, who needs Component hierarchy?

�63

● Just have component fields in GameObject 
● 46ms→43ms update, 398→112ms startup, 325MB→218MB, 455→350lines (commit)

// each object has data for all possible components,
// as well as flags indicating which ones are actually present. 
struct GameObject
{
    GameObject(const std::string&& name) 
      : m_Name(name), m_HasPosition(0), m_HasSprite(0), m_HasWorldBounds(0), m_HasMove(0) { }
    ~GameObject() {}
    
    std::string m_Name;
    // data for all components
    PositionComponent m_Position;
    SpriteComponent m_Sprite;
    WorldBoundsComponent m_WorldBounds;
    MoveComponent m_Move;
    // flags for every component, indicating whether this object "has it"
    int m_HasPosition : 1;
    int m_HasSprite : 1;
    int m_HasWorldBounds : 1;
    int m_HasMove : 1;
};

https://github.com/aras-p/dod-playground/commit/95c04c399


Stop allocating individual GameObjects

�64

● vector<GameObject*> → vector<GameObject> 

● 43ms update, 112→99ms startup, 218MB→203MB (commit)

https://github.com/aras-p/dod-playground/commit/5f7f2324f8


�65

Geez how many intermissions you plan to have here?!

Structure-of-Arrays (SoA) data layout



Typical layout: Array-of-Structures (AoS)

�66

● Some objects, and arrays of them. 
● Simple to understand and manage. 
● Great… iff we need all the data from each object.

//	structure	
struct	Object	
{	
				string	name;	
				Vector3	position;	
				Quaternion	rotation;	
				float	speed;	
				float	health;	
};	
//	array	of	structures	
vector<Object>	allObjects;	



How does data look like in memory?

�67

struct	Object															//	60	bytes:	
{	
				string	name;												//	24	bytes	
				Vector3	position;							//	12	bytes	
				Quaternion	rotation;				//	16	bytes	
				float	speed;												//	4	bytes	
				float	health;											//	4	bytes	
};

name position rotation spd heal

name position rotation spd heal name

name position rotation spd heal name

64 bytes (typical CPU cache line)



What if we don’t need all data?

�68

● If we have a system that only needs object position & speed… 

- Hey CPU, read me position of first object! 
- Sure, it’s right here…

name position rotation spd heal

name position rotation spd heal name

name position rotation spd heal name

64 bytes (typical CPU cache line)



What if we don’t need all data?

�69

● If we have a system that only needs object position & speed… 

- Hey CPU, read me position of first object! 
- Sure, it’s right here… lemme read the whole cache line from memory for you!

64 bytes (typical CPU cache line)

name position rotation spd heal

name position rotation spd heal name

name position rotation spd heal name



What if we don’t need all data?

�70

● If we have a system that only needs object position & speed… 

- Uh ok, get me position of second object then 
- Will do!

name position rotation spd heal

name position rotation spd heal name

name position rotation spd heal name

64 bytes (typical CPU cache line)



What if we don’t need all data?

�71

● If we have a system that only needs object position & speed… 

- Uh ok, get me position of second object then 
- Will do! Here’s the whole cache line for you again!

name position rotation spd heal

name position rotation spd heal name

name position rotation spd heal name

64 bytes (typical CPU cache line)



What if we don’t need all data?

�72

● If we have a system that only needs object position & speed… 

● We end up reading everything from memory, 
● But we only needed 16 bytes out of 60 in every object. 
● 74% of all memory traffic we did not even need!



Flip it: Structure-of-Arrays (SoA)

�73

● Separate arrays for each data member. 
● Arrays need to be kept in sync. 
● “The object” no longer exists; data accessed through an index.

//	structure	of	arrays	
struct	Objects	
{	
				vector<string>	names;									//	24	bytes	each	
				vector<Vector3>	positions;				//	12	bytes	each	
				vector<Quaternion>	rotations;	//	16	bytes	each	
				vector<float>	speeds;									//	4	bytes	each	
				vector<float>	healths;								//	4	bytes	each	
};	



How does data look like in memory?

�74

names[0] names[1] names[2]

64 bytes (typical CPU cache line)

struct	Objects	
{	
				vector<string>	names;									//	24	bytes	each	
				vector<Vector3>	positions;				//	12	bytes	each	
				vector<Quaternion>	rotations;	//	16	bytes	each	
				vector<float>	speeds;									//	4	bytes	each	
				vector<float>	healths;								//	4	bytes	each	
};

positions[0] positions[1] positions[2] positions[3] positions[4]

rotations[0] rotations[1] rotations[2] rotations[3]

spd[0] spd[1] spd[2] spd[3] spd[4] spd[5] spd[6] …



Reading partial data in SoA

�75

● If we have a system that only needs object position & speed… 

- Hey CPU, read me position of first object! 
- Sure, it’s right here…

64 bytes (typical CPU cache line)

positions[0] positions[1] positions[2] positions[3] positions[4]



Reading partial data in SoA

�76

● If we have a system that only needs object position & speed… 

- Hey CPU, read me position of first object! 
- Sure, it’s right here… lemme read the whole cache line from memory for you! 
- (narrator) and so positions for next 4 objects got read into CPU cache too

64 bytes (typical CPU cache line)

positions[0] positions[1] positions[2] positions[3] positions[4]



SoA data layout transformation

�77

● Is fairly common 
● Careful to not overdo it though! 
● At some point the # of individual arrays can get counterproductive 
● Structure-of-Arrays-of-Structures (SoAoS), etc. :)



Back to us: SoA layout for component data

�78

● No longer a GameObject class, just an EntityID 

● 43ms→31ms update, 99→94ms startup, 350→375 lines (commit)

//	"ID"	of	a	game	object	is	just	an	index	into	the	scene	array.	
typedef	size_t	EntityID;	

//	/*	…	*/	

//	names	of	each	object	
vector<string>	m_Names;	
//	data	for	all	components	
vector<PositionComponent>	m_Positions;	
vector<SpriteComponent>	m_Sprites;	
vector<WorldBoundsComponent>	m_WorldBounds;	
vector<MoveComponent>	m_Moves;	
//	bit	flags	for	every	component,	indicating	whether	this	object	"has	it"	
vector<int>	m_Flags;

https://github.com/aras-p/dod-playground/commit/603ce283e


So what have we got?

�79

● 1 million sprites, 20 bubbles: 
● 330ms → 31ms update time. 10x faster! 
● 470ms → 94ms startup time. 5x faster! 
● 310MB → 203MB memory usage. 100MB saved! 
● 400 → 375 lines of code. Code even got a bit smaller! 
●And we did not even get to threading, SIMD, …

Background from http://www.theviciouscircus.com/Awesomeness/showmewhatyougot.html 

http://www.theviciouscircus.com/Awesomeness/showmewhatyougot.html


Ze
ro

 D
ay

s 
by

 S
ca

tte
r –

 M
ad

e 
w

ith
 U

ni
ty

 

�80

B
oo

k 
of

 th
e 

D
ea

d 
by

 U
ni

ty
’s

 D
em

o 
Te

am
 —

 M
ad

e 
w

ith
 U

ni
ty

Ask me questions

Question & Homework time!


