‘Uﬁfty‘lz 201 8- 2019/-_\
AWWCMS
& unit

™

Caveat Emptor

e This is going to be totally random!
e Without any structure!

e ...S0 yeah :)

Random Intro

A long time ago in a galaxy far, far away...

e | thought these are awesome:
o C++
o STL, Boost
o Object Oriented Programming

o Design Patterns
e Had hair!

& unity

Now...

e Most of these are... "not that good”
o C++: too complicated
o STL/Boost: too complicated, over-engineered
o OOP: only useful for Ul widgets
o Design Patterns: BS to sell books/courses
e No hair :(

Some things which | like: Futurist Programming

e "Futurist Programming” by Nick Porcino

e http://nickporcino.com/meshula-net-archive/posts/post168.html

http://nickporcino.com/meshula-net-archive/posts/post168.html

Some things which | like: Futurist Programming

e No Compromise, No Waste Programming

o The program is the BEST at what it does

o The program is FAST

o The footprint is SMALL

o The code is CLEAR

o The program is BUG-FREE

o Abstractions must SIMPLIFY

o The unnecessary is ELIMINATED

o NO COMPROMISES in the name of Extensibility, Modularity, Structured Programming,
Reusable Code, Top Down Design, Standards, Object Oriented Design, or Agility.

& unity 7

Some things which | like: Three Big Lies

e “Three Big Lies” by Mike Acton

e https://www.gdcvault.com/play/1012200/Three-Big-Lies-Typical-Design

e https://cellperformance.beyond3d.com/articles/2008/03/three-big-lies.html

® Fun fact: Mike is at Unity now, working on ECS and stuff!

https://www.gdcvault.com/play/1012200/Three-Big-Lies-Typical-Design
https://cellperformance.beyond3d.com/articles/2008/03/three-big-lies.html

Some things which | like: Three Big Lies

e Software is a platform
e Code designed around the model of the world

e Code is more important than data

Code is just means to solve a problem

e "Solve a problem” is key

o What exact problem is your code solving?

o |Is that an actual problem someone has?

e Don't get too attached to your code (or anything...)

o Some lovely code will get thrown away

o Some nasty code will live forever

“Future Proof”

Prediction 1s very
difficult, especially
about the future.
Niels Bohv

Plan ahead just enough

e Enough to not put yourself into a corner
e Simplest thing that solves today’'s problem

e |t can and will change in the future

o Often in ways you could not have predicted

Exception: Public APls

e Public APIs of a platform (like Unity) live 10+ years

o https://twitter.com/mcclure111/status/954137509843398656

A mcc (>
Follow Vv
.l @mcclure1i1

Library design is this: You have made a
mistake. It is too late to fix it. There is
production code depending on the
mistake working exactly the way the
mistake works. You will never be able to
fix 1t. You will never be able to fix
anything. You wrote this code nine

Q unity seconds ago.

1:44 AM - 19 Jan 2018

https://twitter.com/mcclure111/status/954137509843398656

Future Proof is wishful thinking

e | don't think | ever saw “future proof” plan work out

o Often you don’t know future requirements

o “I'll make a renderer interface and implementation for DX11, and
later on will learn Vulkan and just make an impl for that”

o |f you don’t know Vulkan yet, you have no idea about proper

interface

Future Proofing result is often this

e htips://abstrusegoose.com/432

WHY 1S THIS
STRUCTURE HERE 7

WHERE CouLD THIS BRIDGE
POSSIBLY LEAD ?

WHAT 1S ALL
THIS CRAP?

THIS SIGN DPQOESN'T
HELP ME MUCH.

WHAT A HORRIBLY DESIGNED
STREET. MOST INEFFICIENT.

Goop GoD! (WHAT THE HELL
DOES THIS CONTRAPTION oo?

https://abstrusegoose.com/432

When should | build an abstraction?

e “When you have three things” is good rule

o Have done 3 things separately,
o Suspect they might have something in common,

o Factor out common functionality/interface/ ...

e Duplicating code is sometimes ok!

o http://bitsquid.blogspot.com/2011/01/managing-coupling.html

http://bitsquid.blogspot.com/2011/01/managing-coupling.html

Navigating large codebases

Large codebases often are...

e Fairly old (Unity: some parts 14yo)
e Little or no documentation
e Grew organically

e Some places no one remembers what/why/how

Reaction can often be “aaarg what is this?!”

e Most of it is there for a reason

e Tempting to say “this sucks, burn it, start over”

o Often not a good idea
o It must be solving some problems quite well,

o ...or otherwise you would not be working on it!
e Maybe you would have done it differently

o Original authors would have done it differently too!

& unity

Assume authors are not stupid

e |[f something looks strange/weird/wrong:

o 30% there is a good (non obvious) reason for it
o 30% there was a good reason for it

o 30% there is no good reason, and code is indeed stupid
o 10% Ph'nglui mglw'nafh Cthulhv/ Rilyeh- wgahnagt thicgh

Don't go cowboy refactor/cleanup

e My messup on PSI: Syberian Conflict (2005)

o Contracted on physics/explosions system

o Saw a bunch of “ugh” code

o Refactored/cleaned up the heck out of it

o Did not realize | was only working in “test” solution without rest of game

o Broke builds for everyone else

m (this was 2005, we had no branches or Cl)

& unity

Figuring out a small thing

e Pick a small thing (feature etc.) to figure out

e Search whole codebase for APl/message/...

o Search in whole solution in IDE

o ripgrep https://github.com/BurntSushi/riparep is insanely fast
e Breakpoint in debugger

o Step through/into from there

o Take notes and build a mental picture of things

& unity

https://github.com/BurntSushi/ripgrep

Figuring out a small thing

e |f you get stuck, do ask!

o First spend 10 minutes figuring it out yourself of course
o Don't get stuck for longer than a day
o Many people happy to answer questions & explain things

o Protip: Ctrl+K in Slack, type topic, find channels that sound related

Figuring out a large thing

e Pick a larger system to build high level view of

o Can you figure it out from file/class/functions/interface layout?

o Does it map well to common approaches?

m Game Engine Architecture book

m Real-Rime Rendering book

m Real-Time Collision Detection book

o Are there any docs, talks, presentations about it?

o Ask someone to walk you through it (~1 hour)

m Again, many people are happy to!

& unity

https://www.gameenginebook.com/
http://www.realtimerendering.com/
http://realtimecollisiondetection.net/books/rtcd/

Useful workflows: Debugging

e Debugging is finding where/why a problem is

o “What could possibly have caused this?”

o “What is different in this case vs the one that works?”
o Binary search / Divide & conquer

o Hypothesis, test, repeat

o Source control (next) can be useful

Useful workflows: Source Control

e Use Source Control effectively

o Don't mash up unrelated changes

o Write detailed commit messages, explaining why

m “Fixed some stuff” will bite you in the arse 4 years later

o Learn VCS annotate/blame/log functions

m Who changed this, when and why? Can you ask them?

Useful workflows: Tests

e Having automated tests will save you 1000 times

o 3 months/years in the future when changes have to be made
o It might not even be you making changes

o ...or it might be you, having forgotten everything about the code

Useful workflows: One Thing At A Time

e Small enough “I'm making progress” tasks

o 1-2 hours each; put them into Trello/Favro/Stickies/Dropbox

o Helps with accomplishment & focus
e When stuff does not work:

o What exactly have you changed from when it was working?

m Version control with small, isolated changes!

o Look at that instead of randomly plowing forward

& unity

Useful workflows: Know Your Tools

e L earn a good IDE/debugger

o Including plugins that might help you (Resharper, VisualAssist)

o Keyboard shortcuts

e Learn other tools

o Source control, profilers, grepping, regex, ...

Navigating a large organization

Navigating an organization

e Companies are structured very differently

e Culture within a company can be different too

o Orin different locations / departments of the same company!

e Unity (in R&D) is fairly flexible, relaxed, not overly

hierarchical, and can feel chaotic at times

o The chaos allows awesome things to happen, but can be

intimidating or confusing

& unity

Navigating an organization

e Know your team (well duh)

e But also wander off into other areas

o e.g. join other Slack channels of interest
o Answer questions you know the answer to

o Participate in discussions

Navigating an organization

e Interact with people

o Hackweeks, Unites, team offsites, townhalls, ...
o Yes, it can be hard for many of us

o Often worth the effort though

Navigating an organization

e Make you/team/work be visible

o Did something cool? Tell others about it

m Some teams work on years on great stuff, and never send an update “hey look, we did this!” to

anyone — —
o This does sound like marketing, because it is ISITHIS ..
o “Others know about you” is much better than "__ﬁ?‘ ; %.\
“No one has any idea you even exist” : Jsc1 MARKETING?

’ l
J
{

‘ . ,

.
I s ‘
e
Ny
» |
¥4
.
. .
.v'_J .
‘ _"' . v -
- —t “ o
e A\
S]
e\
¥i ¥ '
-
]
"
| i
» 4

/ |

Ask me 5 or more questions!

