
G
en

er
at

iv
e

Ar
t –

 M
ad

e
w

ith
 U

ni
ty

Programmability
of Graphics
Pipelines

�1

i3D 2018

● Internal build systems engineer
○What does that have to do with graphics?
■ Nothing! …however

Aras Pranckevičius, Unity

�2

● Internal build systems engineer
○What does that have to do with graphics?
■ Nothing! …however

Aras Pranckevičius, Unity

●At Unity since 2006
●Been doing graphics until 2017
●Unity might be the most widely used

graphics engine in the world

�3

Maybe a problem?

Increasing Fidelity

�4

�5

CPU Rendering
(Elite, 1984)

�6

CPU Rendering
(Magic Carpet, 1995)

�7

CPU Rendering
(Descent, 1995)

�8

GPU DX7 level: T&L
(Quake III, 1999)

�9

GPU DX7 level: T&L
(Black & White, 2001)

�10

GPU DX9 level: Shaders
(Far Cry, 2004)

�11

GPU DX9 level: Shaders
(TES IV: Oblivion, 2006)

�12

GPU DX10 level: More Shaders
(Mirror’s Edge, 2008)

�13

GPU DX10 level: More Shaders
(Bioshock Infinite, 2013)

�14

GPU DX11 level: (Compute) Shaders
(Rise of the Tomb Rider, 2016)

�15

GPU DX11 level: (Compute) Shaders
(Dreams, 2018)

Problem

Increasing Complexity

�16

●Simple model: render states
●States are composable

2000, Fixed Function: Simple

�17

● Lost composability aspect :(
●Uber-shaders, shader variants, preprocessor, branching, …

2002, Shaders

�18

●Now you program 1500-thread machines
●Good luck, have fun!

2009, Compute Shaders

�19

●Now you write half of the driver
●Good night, and good luck

2014, Low-level APIs (2014: Metal, 2015: D3D12, 2016: Vulkan)

�20

●Maybe this one will actually make things easier
●…eventually

2018, Raytracing (DXR, etc.)

�21

Problem in detail

Composability

�22

● glEnable(GL_FOG); // OpenGL 1.x
● dev->SetRenderState(D3DRS_FOGENABLE, TRUE); // D3D9 SM2.0

“I want fog” in the days of yore

�23

●Have to modify all shaders, and add fog code in there
● 2x more variants, with & without fog code?
●A branch inside the shader?
●Specialization constant?

“I want fog” in shaders

�24

●So we end up building abstractions in our shader code 
UNITY_APPLY_FOG(i.fogCoord, col);  
…and the same for a whole bunch of other “states”
●Now our abstractions are project/engine-specific :(
●Shaders are not transferable across different tech stacks :(

Modify all the shaders

�25

● Large part of lost composability is the fact that a shader has to do
“everything”
●All the code effectively inlined
●Previous attempts at fixing this (fragments, interfaces,

subroutines) not sucessful
●Maybe with DXR & other raytracing APIs we’ll get “callable

shaders”?
● See also: “Hacking GCN via OpenGL” by Stachowiak https://h3r2tic.github.io/

Shaders are a big blob

�26

https://h3r2tic.github.io/

Problem

Other complexities

�27

●Platforms
●Graphics APIs
●Hardware performance variety
●Hardware featureset variety
● Flexibility

Other axes of complexity

�28

●Research can ignore some of complexity
● “Production” often can not :(

All that stuff is complex!

�29

Goal

Easy innovation in graphics techniques

�30

●Ability to validate research findings is critical for adoption
●Please!
● Share your research code + data
● We don’t really care if your code is “messy” or “not nice”

Sharing of reproducible data

�31

● Essential vs accidental complexity
●Modern APIs like Vulkan or D3D12 need a lot of plumbing
● Should not need 10 years of D3D experience to come up with a better BRDF

Lower amount of unrelated busywork

�32

Suggestion

Game engines & frameworks a good fit!

�33

●Popular, free version, tools, asset pipeline, platforms
● Fast iteration times
●Allows customizing rendering & shaders quite a lot
● Even more so with Scriptable Render Pipelines (see later…)

Unity

�34

● https://github.com/nvidiagameworks/falcor
● D3D12 (including DXR) & Vulkan
● Research & prototype oriented

● https://github.com/shader-slang/slang
● Extended HLSL
● WIP, might not be production ready at the moment

NVIDIA Falcor & Slang

�35

https://github.com/nvidiagameworks/falcor
https://github.com/shader-slang/slang

● https://github.com/Microsoft/DirectX-Graphics-Samples
● “A DirectX 12 Engine Starter Kit”

Microsoft MiniEngine

�36

https://github.com/Microsoft/DirectX-Graphics-Samples

● https://github.com/bkaradzic/bgfx
● Rendering library with many API backends/platforms
● Bindings for many programming languages too!

bgfx

�37

https://github.com/bkaradzic/bgfx

● https://github.com/floooh/sokol
● Minimalistic C (not C++!) graphics API / app model wrapper
● D3D11, Metal, GLES3, GLES2
● http://floooh.github.io/2017/07/29/sokol-gfx-tour.html

Sokol

�38

https://github.com/floooh/sokol
http://floooh.github.io/2017/07/29/sokol-gfx-tour.html

● https://casual-effects.com/g3d
● Research oriented 3D engine

G3D Innovation Engine

�39

https://casual-effects.com/g3d

● https://www.shadertoy.com/
● In-browser, shareable experiments
● If your problem can be expressed in one/several shaders with WebGL

limitations

Shadertoy

�40

https://www.shadertoy.com/

In Detail

Unity & Scriptable Render Pipeline (SRP)

�41

Graphics Engine Pipeline

�42

Graphics API Layers

Render State Management

Resources

Render Surfaces

Device Abstraction

Shader Management

Job Management

Graphics Engine Pipeline

�43

Graphics API Layers

Engine Abstractions

Feature Renderers (Mesh,
Skinned, Particles, …)

Culling

Light Management

Render Jobs

Command Buffer Generation

Synchronization

Graphics Engine Pipeline

�44

Graphics API Layers

Engine Abstractions

Render Passes

Rendering Passes

Postprocessing

View Management

Camera Setup

Graphics Engine Pipeline

�45

Graphics API Layers

Engine Abstractions

Render Passes

Game Logic Based Control

Responding to in-game events

Content based rendering choices

“Interesting Bits”

“Plumbing”

Graphics Engine Pipeline

�46

Graphics API Layers

Engine Abstractions

Render Passes

Game Logic Based Control

Traditional development

�47

Graphics API Layers

Engine Abstractions

Render Passes

Game Logic Based Control

C++

Shading language (HLSL, …)

●Slow iteration

● (Unity specific) rift between “engine dev” (C++) and “users” (C#)

Traditional development

�48

●Python for high level, NumPy/TensorFlow/CUDA for low level
●R, MATLAB, Octave, Mathematica

High/Low level split from research community

�49

●ATI demo engine Sushi (2003)
●Bitsquid/Stingray data driven renderer (2011)
●Destiny’s rendering architecture (2015)
● Frostbite Framegraph (2017)

High/Low split in graphics

�50

https://www.slideshare.net/tobias_persson/bstech-gdc2011
http://advances.realtimerendering.com/destiny/gdc_2015/Tatarchuk_GDC_2015__Destiny_Renderer_web.pdf
https://www.ea.com/frostbite/news/framegraph-extensible-rendering-architecture-in-frostbite

�51

Styles of games made with Unity

�52

Styles of games made with Unity

�53

Styles of games made with Unity

�54

Styles of games made with Unity

Problem

Hard to serve all of them with one
render pipeline

�55

● Forward or Deferred
●A whole bunch of options & knobs
●Shaders mostly customizable
●Render pipeline itself less so
●Black box, complex, fragile
●Still enables all these different games, so that’s good :)

Traditional render pipeline in Unity

�56

● Lean
●User centric
●Optimal
● Explicit

Our wishes

�57

Scriptable Render Pipelines! (SRP)

�58

Graphics API Layers

Engine Abstractions

Render Passes

Game Logic Based Control

C++ / Engine

Shading language (HLSL, …)

C#

●What to render: culling/filtering. World -> sets of objects
●Render: draw sets of objects with some flags/params
●Setup render passes around all that
●Setup per-frame/renderpass data

https://blogs.unity3d.com/2018/01/31/srp-overview/

SRP Concept

�59

https://blogs.unity3d.com/2018/01/31/srp-overview/

●Perf-critical things (culling, drawing sets of objects, …): C++
● Might move to C#/Burst* at some point

●Control/logic, render pass setup: C#
●GPU code (shaders, compute): HLSL
● Maybe subset of C# at some point?

SRP High/Low Level Split

�60

* Unity Burst Compiler: LLVM-based compiler for a high performance subset of C#
https://unity3d.com/unity/features/job-system-ECS

https://unity3d.com/unity/features/job-system-ECS

●Quick iteration of new algorithms
●All benefits of Unity engine/tooling
● Focus on algorithm, not busywork/plumbing
●Hot reload of C#/shader code

SRP Advantages

�61

�62

SRP, iterating on the render pipeline

● If something needs native code tweaks/additions, it needs a new
Unity release
●Not all the latest graphics features are exposed by Unity yet

● Raytracing, conservative raster, bindless, …
● We’re trying to catch up though

●SRP with C#/HLSL code not easily transferable to other engines

SRP Disadvantages (today)

�63

●Simpler
●Runs on all platforms*
●Optimized for mobile / VR
●Single pass forward renderer

Built-in SRP: Lightweight

�64

* At the very moment does not work on WebGL yet due to lack of threads/jobs

●More features!
● Materials: SSS, Anisotropic, Clearcoat, Iridescent,

Rough Refraction, Layered
● Lighting: Area lights, better probes, better

shadows, volumetrics, …
● Lots of debug views

●Requires compute (DX11 HW)
●Tile/Clustered Forward/Deferred

Built-in SRP: High-Definition

�65

● Full live source code of both LWRP & HDRP
● https://github.com/Unity-Technologies/ScriptableRenderPipeline

● Look at how things are done!
● Extend them!
●Build new research on top!

Built-in SRPs

�66

https://github.com/Unity-Technologies/ScriptableRenderPipeline

● Real-Time Polygonal-Light Shading with Linearly Transformed Cosines 
Heitz, Dupuy, Hill, Neubelt; SIGGRAPH 2016

● A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence 
Belcour, Barla; SIGGRAPH 2017

● Efficient Rendering of Layered Materials using an Atomic Decomposition with Statistical Operators 
Belcour; SIGGRAPH 2018

●Next up: you!

SRP in Research

�67

https://eheitzresearch.wordpress.com/415-2/
https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html
https://belcour.github.io/blog/research/2018/05/05/brdf-realtime-layered.html

●Simple API makes graphics pipeline more accessible
●Unity’s built-in LWRP/HDRP reference implementations
●Quick iteration & hot-reload

SRP as Education Tool

�68

�69

Bo
ok

 o
f t

he
 D

ea
d

by
 U

ni
ty

’s
De

m
o

Te
am

 —
 M

ad
e

w
ith

 U
ni

ty

That’s it! Questions?

