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Programmability 
of Graphics 
Pipelines
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● Internal build systems engineer 
○What does that have to do with graphics? 
■ Nothing! …however

Aras Pranckevičius, Unity
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● Internal build systems engineer 
○What does that have to do with graphics? 
■ Nothing! …however

Aras Pranckevičius, Unity

●At Unity since 2006 
●Been doing graphics until 2017 
●Unity might be the most widely used 

graphics engine in the world
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Maybe a problem?

Increasing Fidelity
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CPU Rendering 
(Elite, 1984)
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CPU Rendering 
(Magic Carpet, 1995)
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CPU Rendering 
(Descent, 1995)
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GPU DX7 level: T&L 
(Quake III, 1999)
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GPU DX7 level: T&L 
(Black & White, 2001)
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GPU DX9 level: Shaders 
(Far Cry, 2004)
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GPU DX9 level: Shaders 
(TES IV: Oblivion, 2006)
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GPU DX10 level: More Shaders 
(Mirror’s Edge, 2008)
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GPU DX10 level: More Shaders 
(Bioshock Infinite, 2013)
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GPU DX11 level: (Compute) Shaders 
(Rise of the Tomb Rider, 2016)
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GPU DX11 level: (Compute) Shaders 
(Dreams, 2018)



Problem

Increasing Complexity
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●Simple model: render states 
●States are composable

2000, Fixed Function: Simple
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● Lost composability aspect :( 
●Uber-shaders, shader variants, preprocessor, branching, …

2002, Shaders
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●Now you program 1500-thread machines 
●Good luck, have fun! 

2009, Compute Shaders
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●Now you write half of the driver 
●Good night, and good luck 

2014, Low-level APIs (2014: Metal, 2015: D3D12, 2016: Vulkan)
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●Maybe this one will actually make things easier 
●…eventually 

2018, Raytracing (DXR, etc.)
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Problem in detail

Composability
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● glEnable(GL_FOG); // OpenGL 1.x 
● dev->SetRenderState(D3DRS_FOGENABLE, TRUE); // D3D9 SM2.0 

“I want fog” in the days of yore
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●Have to modify all shaders, and add fog code in there 
● 2x more variants, with & without fog code? 
●A branch inside the shader? 
●Specialization constant? 

“I want fog” in shaders
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●So we end up building abstractions in our shader code 
UNITY_APPLY_FOG(i.fogCoord, col);  
…and the same for a whole bunch of other “states” 
●Now our abstractions are project/engine-specific :( 
●Shaders are not transferable across different tech stacks :( 

Modify all the shaders
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● Large part of lost composability is the fact that a shader has to do 
“everything” 
●All the code effectively inlined 
●Previous attempts at fixing this (fragments, interfaces, 

subroutines) not sucessful 
●Maybe with DXR & other raytracing APIs we’ll get “callable 

shaders”? 
● See also: “Hacking GCN via OpenGL” by Stachowiak https://h3r2tic.github.io/

Shaders are a big blob
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https://h3r2tic.github.io/


Problem

Other complexities
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●Platforms 
●Graphics APIs 
●Hardware performance variety 
●Hardware featureset variety 
● Flexibility 

Other axes of complexity
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●Research can ignore some of complexity 
● “Production” often can not :( 

All that stuff is complex!
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Goal

Easy innovation in graphics techniques
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●Ability to validate research findings is critical for adoption 
●Please! 
● Share your research code + data 
● We don’t really care if your code is “messy” or “not nice”

Sharing of reproducible data

�31



● Essential vs accidental complexity 
●Modern APIs like Vulkan or D3D12 need a lot of plumbing 
● Should not need 10 years of D3D experience to come up with a better BRDF

Lower amount of unrelated busywork
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Suggestion

Game engines & frameworks a good fit!
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●Popular, free version, tools, asset pipeline, platforms 
● Fast iteration times 
●Allows customizing rendering & shaders quite a lot 
● Even more so with Scriptable Render Pipelines (see later…)

Unity
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● https://github.com/nvidiagameworks/falcor 
● D3D12 (including DXR) & Vulkan 
● Research & prototype oriented 

● https://github.com/shader-slang/slang 
● Extended HLSL 
● WIP, might not be production ready at the moment

NVIDIA Falcor & Slang
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https://github.com/nvidiagameworks/falcor
https://github.com/shader-slang/slang


● https://github.com/Microsoft/DirectX-Graphics-Samples  
● “A DirectX 12 Engine Starter Kit”

Microsoft MiniEngine
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https://github.com/Microsoft/DirectX-Graphics-Samples


● https://github.com/bkaradzic/bgfx  
● Rendering library with many API backends/platforms 
● Bindings for many programming languages too!

bgfx
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https://github.com/bkaradzic/bgfx


● https://github.com/floooh/sokol   
● Minimalistic C (not C++!) graphics API / app model wrapper 
● D3D11, Metal, GLES3, GLES2 
● http://floooh.github.io/2017/07/29/sokol-gfx-tour.html

Sokol
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https://github.com/floooh/sokol
http://floooh.github.io/2017/07/29/sokol-gfx-tour.html


● https://casual-effects.com/g3d  
● Research oriented 3D engine

G3D Innovation Engine
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https://casual-effects.com/g3d


● https://www.shadertoy.com/   
● In-browser, shareable experiments 
● If your problem can be expressed in one/several shaders with WebGL 

limitations

Shadertoy
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https://www.shadertoy.com/


In Detail

Unity & Scriptable Render Pipeline (SRP)
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Graphics Engine Pipeline
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Graphics API Layers

Render State Management

Resources

Render Surfaces

Device Abstraction

Shader Management

Job Management



Graphics Engine Pipeline
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Graphics API Layers

Engine Abstractions

Feature Renderers (Mesh, 
Skinned, Particles, …)

Culling

Light Management

Render Jobs

Command Buffer Generation

Synchronization



Graphics Engine Pipeline
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Graphics API Layers

Engine Abstractions

Render Passes

Rendering Passes

Postprocessing

View Management

Camera Setup



Graphics Engine Pipeline
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Graphics API Layers

Engine Abstractions

Render Passes

Game Logic Based Control

Responding to in-game events

Content based rendering choices



“Interesting Bits”

“Plumbing”

Graphics Engine Pipeline
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Graphics API Layers

Engine Abstractions

Render Passes

Game Logic Based Control



Traditional development
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Graphics API Layers

Engine Abstractions

Render Passes

Game Logic Based Control

C++

Shading language (HLSL, …)



●Slow iteration 

● (Unity specific) rift between “engine dev” (C++) and “users” (C#)

Traditional development
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●Python for high level, NumPy/TensorFlow/CUDA for low level 
●R, MATLAB, Octave, Mathematica

High/Low level split from research community
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●ATI demo engine Sushi (2003) 
●Bitsquid/Stingray data driven renderer (2011) 
●Destiny’s rendering architecture (2015) 
● Frostbite Framegraph (2017)

High/Low split in graphics
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https://www.slideshare.net/tobias_persson/bstech-gdc2011
http://advances.realtimerendering.com/destiny/gdc_2015/Tatarchuk_GDC_2015__Destiny_Renderer_web.pdf
https://www.ea.com/frostbite/news/framegraph-extensible-rendering-architecture-in-frostbite
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Styles of games made with Unity
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Styles of games made with Unity
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Styles of games made with Unity
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Styles of games made with Unity



Problem

Hard to serve all of them with one 
render pipeline
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● Forward or Deferred 
●A whole bunch of options & knobs 
●Shaders mostly customizable 
●Render pipeline itself less so 
●Black box, complex, fragile 
●Still enables all these different games, so that’s good :)

Traditional render pipeline in Unity
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● Lean 
●User centric 
●Optimal 
● Explicit

Our wishes
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Scriptable Render Pipelines! (SRP)
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Graphics API Layers

Engine Abstractions

Render Passes

Game Logic Based Control

C++ / Engine

Shading language (HLSL, …)

C#



●What to render: culling/filtering. World -> sets of objects 
●Render: draw sets of objects with some flags/params 
●Setup render passes around all that 
●Setup per-frame/renderpass data 

https://blogs.unity3d.com/2018/01/31/srp-overview/ 

SRP Concept
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https://blogs.unity3d.com/2018/01/31/srp-overview/


●Perf-critical things (culling, drawing sets of objects, …): C++ 
● Might move to C#/Burst* at some point 

●Control/logic, render pass setup: C# 
●GPU code (shaders, compute): HLSL 
● Maybe subset of C# at some point?

SRP High/Low Level Split
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* Unity Burst Compiler: LLVM-based compiler for a high performance subset of C# 
https://unity3d.com/unity/features/job-system-ECS 

https://unity3d.com/unity/features/job-system-ECS


●Quick iteration of new algorithms 
●All benefits of Unity engine/tooling 
● Focus on algorithm, not busywork/plumbing 
●Hot reload of C#/shader code

SRP Advantages
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SRP, iterating on the render pipeline



● If something needs native code tweaks/additions, it needs a new 
Unity release 
●Not all the latest graphics features are exposed by Unity yet 

● Raytracing, conservative raster, bindless, … 
● We’re trying to catch up though 

●SRP with C#/HLSL code not easily transferable to other engines

SRP Disadvantages (today)
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●Simpler 
●Runs on all platforms* 
●Optimized for mobile / VR 
●Single pass forward renderer

Built-in SRP: Lightweight

�64

* At the very moment does not work on WebGL yet due to lack of threads/jobs



●More features! 
● Materials: SSS, Anisotropic, Clearcoat, Iridescent, 

Rough Refraction, Layered 
● Lighting: Area lights, better probes, better 

shadows, volumetrics, … 
● Lots of debug views 

●Requires compute (DX11 HW) 
●Tile/Clustered Forward/Deferred

Built-in SRP: High-Definition
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● Full live source code of both LWRP & HDRP 
● https://github.com/Unity-Technologies/ScriptableRenderPipeline  

● Look at how things are done! 
● Extend them! 
●Build new research on top!

Built-in SRPs
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https://github.com/Unity-Technologies/ScriptableRenderPipeline


● Real-Time Polygonal-Light Shading with Linearly Transformed Cosines 
Heitz, Dupuy, Hill, Neubelt; SIGGRAPH 2016 

● A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence 
Belcour, Barla; SIGGRAPH 2017 

● Efficient Rendering of Layered Materials using an Atomic Decomposition with Statistical Operators 
Belcour; SIGGRAPH 2018 

●Next up: you!

SRP in Research
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https://eheitzresearch.wordpress.com/415-2/
https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html
https://belcour.github.io/blog/research/2018/05/05/brdf-realtime-layered.html


●Simple API makes graphics pipeline more accessible 
●Unity’s built-in LWRP/HDRP reference implementations 
●Quick iteration & hot-reload

SRP as Education Tool
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That’s it! Questions?


