of Graphics
MIVEAINEE

13D 2018

Aras Pranckevicius, Unity

e Internal build systems engineer
o What does that have to do with graphics?

= Nothing! ..however

Aras Pranckevicius, Unity

e Internal build systems engineer
o What does that have to do with graphics?

= Nothing! ...however

e At Unity since 2006

e Been doing graphics until 2017

e Unity might be the most widely used
graphics engine in the world

Maybe a problem?

Increasing Fidelity

Front View

éq; |) M — e —— o
PU

@wd@Mm‘
MagiciCarpersii®ss)

LRSER 4 M1 CONCSHN
L UL: ' : MISSILE

. ¥ &%

L 4
- D

- 12

=S
e

.- e ' .
}»
® - ew. .J .
> ! \ | -
‘- - 4 3
y ™ .’l
.- : . : :
» .« .
y | - -
— - ' . %
» - - -~ w - 4 - T a i e P)
— -
oh - : :

- o - - - ' _ ",; : . .
.j- "—: “ o 1* 0‘.. .*-ﬂ" m’ﬂ”
o “oo~o""'“ N

--’” ..‘ d
4 # o Lo 00“.. 2 -
P e » - 2 -
=R ‘" " ™~ ' P =
» 4 - - & - A~ ' i
= . ,A\ 3 PP
_) ",.0 -
4 donds B § PRl ALl & B B BS -
pa—— v .’."-.; .; s o~ A~ - - A—_— - —
,,." " P "
" . ~ . >
. '
@ !
-_— 14 -

gA- ,
- A “

- : > :

,r' pr’ -

?’3‘ b) '

. » . »

— —~> - - p—

. g | —

v g

| “ oFarm

G U DX 7 I i | P m T w:as E62% F:59%
AR , ¥ | § B e PR SR v W R T T

‘

(Black & Whlte\ 200

-

,- e .

More Shaders

mj,i ,I 1]‘ |t{, \v

‘n-m l‘

Problem

Increasing Complexity

2000, Fixed Function: Simple

e Simple model: render states
e States are composable

2002, Shaders

e Lost composability aspect :(
e Uber-shaders, shader variants, preprocessor, branching, ...

2009, Compute Shaders

e Now you program 1500-thread machines
e Good luck, have fun!

2014, Low-level APIs

e Now you write half of the driver
e Good night, and good luck

2018, Raytracing

e Maybe this one will actually make things easier
o ..eventually

Problem in detail

Composability

‘| want fog" in the days of yore

e glEnable(GL_FOG);
e dev->SetRenderState(D3DRS_FOGENABLE, TRUE); // D3D9 SM2.0

‘| want fog" in shaders

e Have to modify all shaders, and add fog code in there
e 2X more variants, with & without fog code?

e A branch inside the shader?

e Specialization constant?

Modify all the shaders

e SO we end up building abstractions in our shader code
UNITY_APPLY_FOG(i.fogCoord, col);
..and the same for a whole bunch of other “states”

e Now our abstractions are project/engine-specific :(

e Shaders are not transferable across different tech stacks :(

& unity

Shaders are a big blob

e Large part of lost composability is the fact that a shader has to do
“everything”

e All the code effectively inlined

e Previous attempts at fixing this (fragments, interfaces,
subroutines) not sucessful

e Maybe with DXR & other raytracing APIs we'll get “callable

shaders™?
e See also: “Hacking GCN via OpenGL’ by Stachowiak https://h3r2tic.qgithub.io/

& unity

https://h3r2tic.github.io/

Problem

Other complexities

Other axes of complexity

e Platforms

e Graphics APIs

e Hardware performance variety
e Hardware featureset variety

o Flexibility

& unity

105

Gear
VR

~JVITA

tvOS

MINT EM%DS

Wi

R =5

DDDDDDD

: ARCore

—JAa

androidtyv

wisTES OE
SWIICH

All that stuff is complex!

e Research can ignore some of complexity
¢ “Production” often can not :(

Goal

Easy innovation in graphics techniques

Sharing of reproducible data

e Ability to validate research findings is critical for adoption

e Please!

e Share your research code + data
e We don't really care if your code is "messy” or “not nice”

Lower amount of unrelated busywork

e Essential vs accidental complexity
e Modern APIs like Vulkan or D3D12 need a lot of plumbing

e Should not need 10 years of D3D experience to come up with a better BRDF

Suggestion

Game engines & frameworks a good fit!

Unity

e Popular, free version, tools, asset pipeline, platforms
e [ast iteration times

e Allows customizing rendering & shaders quite a lot
e Even more so with Scriptable Render Pipelines (see later...)

NVIDIA Falcor & Slang

e https://github.com/nvidiagameworks/talcor

e D3D12 (including DXR) & Vulkan
e Research & prototype oriented

e https://github.com/shader-slang/slang

e Extended HLSL
e WIP, might not be production ready at the moment

& unity

https://github.com/nvidiagameworks/falcor
https://github.com/shader-slang/slang

Microsoft MiniEngine

e https://github.com/Microsoft/DirectX-Graphics-Samples
e “A DirectX 12 Engine Starter Kit”

https://github.com/Microsoft/DirectX-Graphics-Samples

bgfx

e hitps://github.com/bkaradzic/bgtx

e Rendering library with many APl backends/platforms

e Bindings for many programming languages too!

https://github.com/bkaradzic/bgfx

Sokol

e https://github.com/floooh/sokol

e Minimalistic C (not C++!) graphics API / app model wrapper
e D3D11, Metal, GLES3, GLES?
e http://floooh.qgithub.io/2017/07/29/sokol-gfx-tour.htm|

https://github.com/floooh/sokol
http://floooh.github.io/2017/07/29/sokol-gfx-tour.html

G3D Innovation Engine

e https://casual-effects.com/g3d

e Research oriented 3D engine

https://casual-effects.com/g3d

Shadertoy

e https://www.shadertoy.com/
e In-browser, shareable experiments

e |f your problem can be expressed in one/several shaders with WebGL
limitations

https://www.shadertoy.com/

In Detail

Unity & Scriptable Render Pipeline (SRP)

Graphics Engine Pipeline

42

Render State Management

Resources

Render Surfaces

Device Abstraction

Shader Management

Job Management

Graphics Engine Pipeline

Feature Renderers (Mesh,
Skinned, Particles, ...)

Culling

Light Management

_ / Render Jobs

. Command Buffer Generation
Graphics API Layers

Synchronization

& unity)

Graphics Engine Pipeline

Rendering Passes

_\ Postprocessing

Engine Abstractions View Management

Camera Setup

Graphics API Layers

& unity)

Graphics Engine Pipeline

Render Passes

Responding to in-game events

Engine Abstractions Content based rendering choices

Graphics API Layers

& unity)

Graphics Engine Pipeline

“Interesting Bits”

“Plumbing”

Traditional development

C++

Shading language (HLSL, ...)

Traditional development

e Slow iteration

|l 1 1 1 |1'667 r'nin 1 1 1 |3°333 rpin] [] |5 min []]] |6'667 ';nin] [1 |8'333 rlnin 1 1 1 | 10 minu

1
-
A s T E———————

Lots of compilation... :(

—

—

~NO O A O N = O

—

e (Unity specific) rift between “engine dev” (C++) and “users” (C#)

& unity

High/Low level split from research community

e Python for high level, NumPy/TensorFlow/CUDA for low level
e R, MATLAB, Octave, Mathematica

High/Low split in graphics

e ATl demo engine Sushi (2003)

e Bitsquid/Stingray data driven renderer (2011)
e Destiny’s rendering architecture (2015)

e Frostbite Framegraph (2017)

https://www.slideshare.net/tobias_persson/bstech-gdc2011
http://advances.realtimerendering.com/destiny/gdc_2015/Tatarchuk_GDC_2015__Destiny_Renderer_web.pdf
https://www.ea.com/frostbite/news/framegraph-extensible-rendering-architecture-in-frostbite

N
N
N
N

,}

" 'a""

2
)

T N

- — Cindy -

v Cindy—Cid's grease-monkey granddaughter

SUBNAUTICA
.EARBYACCESS

L —

Problem

Hard to serve all of them with one
render pipeline

Traditional render pipeline in Unity

e Forward or Deferred

e A whole bunch of options & knobs

e Shaders mostly customizable

e Render pipeline itself less so

e Black box, complex, fragile

e Still enables all these different games, so that's good :)

& unity

Our wishes

e Lean

e User centric
e Optimal

e Explicit

Scriptable Render Pipelines! (SRP)

C#

C++ / Engine

Shading language (HLSL, ...)

SRP Concept

e What to render: culling/filtering. World -> sets of objects
e Render: draw sets of objects with some flags/params

e Setup render passes around all that

e Setup per-frame/renderpass data

https://blogs.unity3d.com/2018/01/31/srp-overview/

& unity

https://blogs.unity3d.com/2018/01/31/srp-overview/

SRP High/Low Level Split

e Perf-critical things (culling, drawing sets of objects, ...): C++

e Might move to C#/Burst” at some point

e Control/logic, render pass setup: C#
e GPU code (shaders, compute): HLSL

e Maybe subset of C# at some point?

* Unity Burst Compiler: LLVM-based compiler for a high performance subset of C#

https://unity3d.com/unity/features/job-system-ECS

SRP Advantages

e Quick iteration of new algorithms

e All benefits of Unity engine/tooling

e Focus on algorithm, not busywork/plumbing
e Hot reload of C#/shader code

e fdt Yew Newgele Lode Befocior Budd Fyn Jeos VWS YWndow Help

e T X I g Cent » Acceurt - Layers =~ Layoet - [Demo beta2017.07-28 W Asyety @ Scrptabielerde®peine Bl HORerdePpeine D) HORenderP geine.o b VO Debeg| Any CPU > €@ Attach 10 Unity Editer -
0 StopAteTmeinecs *) HDRowdePpeioecs * D Soomc X Q3 PostProcssslayercs X) ThePamcs X
1 Macrize On ¥ e A Lzre \Cametl a.Lamei dlype == Laeel glype.nelieceiuwy

7 (new Utilities.ProfilingSample("Blit to final RT", cmd))

) iterating on the renderwplpel|new~ra~re«>

RenderVelocity(m_CullResults, hdCamera, renderContext, cad);

TODO: Check with VFX tean.

RenderDistortion(m_CullResults, camera, renderContext, cad):

cnd.Blit(m_CameraColorBufferRT, BuiltinRenderTextureType.CameraTarget);

}

Rewdarf:;hug(mtalera, Cld);

f (camera.cameralype == Cameralype.SceneView)

i
;

renderContext. ExecuteCommandBuffer(cmd) ;
CommandBufferPool .Release(cad);
renderContext. Submit();

cad. SetRenderTarget (BuiltinRenderTextureType .CaneraTarget, n_CameraDepthStencilBufferRT);

i RenderOpaqueRenderList(CullResults cull, Camera camera, ScriptableRenderContext renderContext, Com

f (!m_DebugDisplaySettings.renderingDebugSettings.displayOpaquelbjects)

3 e
’

renderContext. ExecuteConmandBuf fer(cmd) ;
ced.Clear();

settings = nev DrawRendererSettings(cull, camera, ShaderPassName(passMane))
62 {

rendererConfiguration = rendererConfiguration,
sorting = { flags = SortFlags.CommonOpaque }

SRP Disadvantages (today)

¢ If something needs native code tweaks/additions, it needs a new
Unity release

e Not all the latest graphics features are exposed by Unity yet

e Raytracing, conservative raster, bindless, ...
e We're trying to catch up though

e SRP with C#/HLSL code not easily transferable to other engines

& unity

Built-in SRP: Lightweight

e Simpler

e Runs on all platforms*

e Optimized for mobile / VR

e Single pass forward renderer

* At the very moment does not work on WebGL yet due to lack of threads/jobs

& unity)

Built-in SRP: High-Definition

e More features!

e Materials: SSS, Anisotropic, Clearcoat, Iridescent,
Rough Refraction, Layered

e Lighting: Area lights, better probes, better
shadows, volumetrics, ...

e |ots of debug views

e Requires compute (DX11 HW)
e Tile/Clustered Forward/Deferred

& unity)

Built-in SRPs

e Full live source code of both LWRP & HDRP
e https://github.com/Unity-Technologies/ScriptableRenderPipeline

e ook at how things are done!

e Extend them!
e Build new research on top!

https://github.com/Unity-Technologies/ScriptableRenderPipeline

SRP in Research

e Real-Time Polygonal-Light Shading with Linearly Transformed Cosines
Heitz, Dupuy, Hill, Neubelt; SIGGRAPH 2016

e A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence
Belcour, Barla; SIGGRAPH 2017

e Efficient Rendering of L ayered Materials using an Atomic Decomposition with Statistical Operators
Belcour; SIGGRAPH 2018

e Next up: you!

67

https://eheitzresearch.wordpress.com/415-2/
https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html
https://belcour.github.io/blog/research/2018/05/05/brdf-realtime-layered.html

SRP as Education Tool

e Simple APl makes graphics pipeline more accessible
e Unity's built-in LWRP/HDRP reference implementations
e Quick iteration & hot-reload

5 g AW
“ S v_ - _ > . b '.-‘ . \ ' ' ‘
o P W TN o S . [s
. - T L . .)12 ey ¢ .
U et e i S SN ISR
L . . ., % . - o .
) . ot . Sk A
: LSO

=y
o

LS

e A

v 4\
.

Ty - " X3

» N

R ERAS ’
Gt s ?‘ e

\

;‘

N

“

L

'
y

L
n/ “‘4'

-
L
>
T =
—
)
=’
e —
s
e
~
L 4
-

.

\ \
Team — Made w

Book of the Dead by Unity's demo

