Shading and Shadows

Oh my!
Shader what?

- What is that shader thing anyway?
- What does it do?
- Is it healthy for me?
Are these shaders?

- Which one of those uses shaders?
Are these shaders?

• Both! A next-gen red shader and a skin shader.
Are these shaders?

- A blur shader? Nope.
Shaders are nothing

- A shader does not actually do fancy things
- Vertex shader: vertex data in, vertex data out
- Pixel shader: pixel data & textures in, color out
- A shader knows nothing else!
Shaders are nothing

- Shader operates on a single vertex or single pixel only
- It can multiply two textures together
- It can’t blur the screen
- Blur does not happen on single pixel!
Who does blur?

- Interesting effects are more than shaders
- Shaders + data + scripts + lights
Feeding the shader

- Often needs custom data in textures
 - Bumpmaps, glossmaps, AO, whatnot
- Data in vertices (tangents, colors, ...)
- Scripts
 - `material.SetTexture`, `SetMatrix`, ...
- Render Textures
Blur

- Render scene into Render Texture
- Blur a bit into another Render Texture
 - For each pixel: take average of couple neighbors
- Repeat
Examples
Water in island demo

- How did they do that?
Water shorelines

• No funky shaders
• Just careful feeding
Water shorelines

- Shader combines wave mask & texture
- Script does some voodoo texture scrolling
- All about feeding the shader
Cubemaps FTW

- Cubemap is like a textured cube
- Much like skybox faces
- Reflections!
- Lighting!
Reflections

- Reflective shaders were in Unity for ages
- But how you make the cubemap?
- In 2.0 we have camera.RenderToCubemap
- Demotime
Cubemap lighting

- This uses no lights at all!
- All lighting is in the cubemap
Cubemap lighting

- Encodes lots of lights in one cubemap
- Looks better
- Works a lot faster
- GC: Palestine used to great effect
Cubemap lighting

- Hey, it’s toon lighting!
- Same shader. Different cubemap.
cubemap.SetPixel

- Compute your lighting into a cubemap

```csharp
@MenuItem("Custom/Gen Cubemap _g")
static function GenCubemap() {
    var cubemap : Cubemap = EditorUtility.FindAsset("New Cubemap.cubemap", Cubemap);
    var size = cubemap.width;
    var fsize : Float = size;
    For( var face = 0; face < 6; ++face )
    {
        for( var y = 0; y < size; ++y )
        {
            for( var x = 0; x < size; ++x )
            {
                var dir : Vector3;
                switch( face ) {
                    case 0: dir = Vector3( 1.0, -(y/fsize*2-1), -(x/fsize*2-1) ); break;
                    case 1: dir = Vector3( -1.0, -(y/fsize*2-1), x/fsize*2-1 ); break;
                    case 2: dir = Vector3( x/fsize*2-1, 1.0, y/fsize*2-1 ); break;
                    case 3: dir = Vector3( x/fsize*2-1, -1.0, -(y/fsize*2-1) ); break;
                    case 4: dir = Vector3( -(x/fsize*2-1), -((y/fsize*2-1), 1.0); break;
                    case 5: dir = Vector3(-((x/fsize*2-1), -((y/fsize*2-1), -1.0); break;
                }
                dir = dir.normalized; // this is direction to pixel now
                var color : Color;

                var lightDir = Vector3(1,1,0);
                var viewDir = Vector3(0,0,1);
                var diffuse = Vector3.Dot( lightDir, dir );
                color.a = diffuse;
                color.b = -diffuse;
                var edge = Vector3.Dot( viewDir, dir );
                if( edge < 0.6 )
                    color *= 0.5;
                cubemap.SetPixel( face, x, y, color );
            }
        }
    }
    cubemap.Apply();
}
```
Skin shading

- Diffuse vs. skin
Example project

- Will provide example project after conference
Performance
Performance

- Fillrate
- Geometry, draw calls
- Shadows
Fillrate

- Drawing pixels
- VRAM bandwidth & shader computations
- Change resolution: does FPS change?
Fillrate

- GeForce 8800U
 - 40 billion pixels/sec, 100 GB/sec
- Intel GMA 950
 - 1.5 billion pixels/sec, 10 GB/sec (shared)
- Resolution & pixel light count
Shadows

- Use wisely
- Point light shadows = evil
 - Draws scene ~6 times into a cubemap
Custom shaders

- How long a shader should be?
- Is this expensive?

```c
half4 frag(v2f i) : COLOR
{
    half3 n = i.normal;
    half4 col = texCUBE( _Cube, n );
    return col;
}
```
Custom shaders

• Inspector shows assembly

• This is 1 instruction

```cpp
SubProgram "opengl" {
Keywords {}
SetTexture [_Cube] {CUBE}
"!!ARBfp1.0
# 1 instructions, 1 texture reads
TEX result.color, fragment.texcoord[0], texture[0], CUBE;
END
# 1 instructions, 0 R-regs
```
```
Custom shaders

- 50 instruction shader can run 5x slower than a 10 instruction one
- Could draw 5x more pixels!
- Don’t compute if you don’t have to
- “Bake” math into textures / cubemaps
Bake math into texture

- XRay shader on the wiki
- Run dot(normal, viewdir) through texture
- Very cheap to render
Bake math into texture

- Artist friendly
- This is just different ramp textures
Questions?